PulserPlus.Net™ Low Voltage High Resistance Grounding System

Communication Manual with Modbus Memory Map

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com 1369 Cox Avenue • Erlanger, KY 41018 • USA Phone: 800-537-6144 / 859-283-0778 • Fax: 859-283-2978 www.postglover.com

Revision	Date	Changes
HR112-12	2/1/2012	Original Release
HR112-13	1/21/2013	Clarifications for reading alarm and event tables, clarification for float values, addition of MODBUS pulse activation bit
HR112-14	1/5/2015	Addition of MODBUS bits, Integers and Float Values for firmware versions up to 5.4. Corrected Data Tables.

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

Quality System Certified to ISO 9001 Serving the Electrical Industry Since 1892 © 2015 Post Glover Resistors, Inc.

Table of Contents

1.0 Introduction	5
2.0 Communications Ports	5
3.0 Data Tables	7
4.0 Data Table Access via Modbus	12
5.0 Modbus Memory Map	20

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

Quality System Certified to ISO 9001 Serving the Electrical Industry Since 1892 © 2015 Post Glover Resistors, Inc.

1.0 Introduction

This manual describes the communication ports of the PulserPlus.Net High™ Resistance Grounding System and the information that is accessible from them. The manual and the terminology used assume that the user has a basic understanding of the communication technologies and protocols implemented.

2.0 Communications Ports

This section presents information on the communication ports available on the controller. Changes to the controller's communications ports should only be made by qualified technicians. The controller is provided with an RS-485 port by default and has an option for an Ethernet port. The ports are as follows:

- 1. Port 1: This port is configured as RS-485. When power cycles, the controller will load the latest port 1 "RS-485 Network ID". Port 1 is configured as follows:
 - a. 1 channel RS-485, no galvanic isolation, 300 to 115,200 bps baud rate (default 115,200), -7 to +12VDC differential maximum control voltage, shielded twisted pair cable (EIA 485) and a maximum cable length of 4000 feet (1200 meters).
 - RJ-11 connector pin-out, assuming pin 1 on bottom left and pin 6 on top left when looking at port b. 1. Flow control signals are not used:
 - i. Pin #1: A signal (+).
 - ii. Pin #2: 0V reference.
 - iii. Pin #3: TXD signal.
 - iv. Pin #4: RXD signal.
 - v. Pin #5: 0V reference.
 - vi. Pin #6: B signal (-).
 - c. Signals are related to the controllers 0V; the same 0V is used by the power supply.
 - d. This port is not isolated. If the controller is used with a non-isolated external device, avoid potential voltage that exceeds ±10V.
- 2. Port 2 (optional): Ethernet TCP/IP, RJ45 type connection, 10/100Mbps transmission speed, star network topology based on external hub/switch, Category 5 shielded twisted pair with a drop line length of up to 333 feet (100 meters) controller to hub/switch.
 - a. RJ45 connector pin-out
 - i. Pin #1: T+ = positive transmit signal.
 - ii. Pin #2: T- = negative transmit signal.
 - iii. Pin #3: R+ = positive receive signal.
 - iv. Pin #6: R- = negative receive signal.
 - b. Ethernet LEDs
 - i. Green LED (LNK): ON when link exists.
 - ii. Yellow LED (ACT): Blinks during RX/TX.
 - Controller to hub/switch connection С

Controller			Hub/Swit	tch
<u> Pin #</u>	Function		<u> Pin #</u>	Function
1	T+	to	1	T+
2	T-	to	2	T-
3	R+	to	3	R+
6	R-	to	6	R-

.

2.1 Communication Port Settings

Controller communications to an external customer network is either by MODBUS RTU via RS-485 on controller port 1 or via Ethernet TCP/IP on controller Port 2. Modbus TCP/IP is via Ethernet socket 2, port 502.

Port 1:

The default status of controller port 1 is MODBUS RTU via RS-485. The default network ID number is 64. The default baud rate is 115,200.

To change the port 1 communication parameters for the controller, use the following procedure:

- 1. If the password is not already disabled or entered, press the "EDIT" key and follow the password entry instructions.
- 2. On the "CommPort1" screen and using the arrow keys, select either "Port Setting" or "RS-485 Network ID" for editing. Edit per the procedure in section 11.4 of the Instruction Manual. The "RS-485 Network ID" value is saved to the "RS485 Parameters" data table without having to leave the screen. The display shows the configuration of port 1. Note that the settings available are only from 64 to 127. This is due to the controller reserving 0 to 63 for Fieldbus communications. These communications are not supported by the PulserPlus.Net.

Port 2:

The IP address for the controller uses the IP4 protocol. Each part is made up of four octets with decimal points between each octet. The customer must provide an IP address, subnet mask and gateway mask for communicating on the customer Ethernet network.

A default set of values is preloaded in the data table "TCP-IP Init". When power cycles, the controller will load the latest port 2 configuration. The default/updated values can be viewed from the "Ethernet Port" screen.

To change the Ethernet communication parameters for the controller, use the following procedure:

- 1. If the password is not already disabled or entered, press the "EDIT" key and follow the password entry instructions.
- 2. On the "Ethernet Port" screen and using the arrow keys, select any of the "IP address", "Subnet mask" or "Gateway mask" values for editing. Edit per the procedure in section 11.4 of the Instruction Manual. Upon leaving the screen, all values are saved to the "TCP-IP Init" data table. These values will be reloaded into the controller any time power cycles.

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

3.0 Data Tables

3.1 Data Table "Alarms"

No. Columns: No. Rows: Column 1: Column 2: Column 3: Column 4: Column 5:	5 200 "Alarm Type", integer; this is the code used by the program to determine which screen to display when the current record is being accessed. "Alarm Value", float; this is the value of the variable that generated the alarm. "Date", string, 9 bytes; the date that the alarm occurred. "Time", string, 9 bytes; the time that the alarm occurred. (24-hour clock) "Alarm Acknowledge", integer; 0 – alarm acknowledged, 1 – alarm not acknowledged. Directs alarm display on whether to display "Alarm Acknowledged" tag.
<u>Alarm Type</u>	Alarm Description
11	Voltage Above Limit - "Warning!! Voltage across NGR has exceeded maximum alarm value."
12	Voltage Below Limit - "Warning!! Voltage across NGR is below the minimum alarm value."
21	Current Above Limit - "Warning!! Current through NGR has exceeded maximum alarm value."
22	Current Below Limit - "Warning!! Current through NGR is below the minimum alarm value."
71	Phase A Fault - "Warning!! A single-line-to-ground fault has occurred on Phase A."
72	Phase B Fault - "Warning!! A single-line-to-ground fault has occurred on Phase B."
73	Phase C Fault - "Warning!! A single-line-to-ground fault has occurred on Phase C."
113	NGR Failure - "Warning!! An open circuit has occurred in the NGR. An ungrounded system condition may result."
120	NGR Failure Volts – "Warning!! NGR Failure – Open circuit NGR voltage."
121	NGR Failure Amps – "Warning!! NGR Failure – Open circuit NGR current."

3.2 Data Table "Customer Calculated Values"

No. Columns:	1
No. Rows:	1
Column 1:	"System Charging Current", float; this is the value calculated when the "CHRGNG
	CURRENT" key is pressed on the front panel.

3.3 Data Table "Customer Password"

No. Columns:	1
No. Rows:	1
Column 1:	"Customer Password", integer. This value is factory set to "1000" and is user editable. The
	customer password is limited to the range "1000" to "9999".

3.4 Data Table "Customer System Data"

No. Columns:	10
No. Rows:	1
Column 1:	"Ground Fault Alarm Level", float; this is the value of the current through the sensing resistor/NGR transducer used in the NGR open-circuit detection logic. This value is user editable
Column 2:	"Sensing Resistor Voltage Alarm Level – short circuit", float; this is the value of voltage across the sensing resistor used in the NGR open-circuit detection logic during a short circuit condition. This value is set based upon the system rated voltage. This value is user editable.
Column 3:	"Sensing Resistor Voltage Alarm Level – normal", float; this is the value of voltage across the sensing resistor used in the NGR open-circuit detection logic during a normal system conditions. This value is defaulted to 10% of the value in column 2. This value is user editable.
Column 4:	"System Rated Voltage", float; this is the rated voltage of the customer's system. This value is user editable.
Column 5:	"System Rated Current", float; this is the rated current of the customer's system. This value is user editable.
Column 6:	"NGR Maximum Voltage", float; this is the value at which the system enters into an overvoltage condition. An alarm is generated when this occurs. This value is user editable.
Column 7:	"NGR Minimum Voltage", float; this is the value at which the system enters into an undervoltage condition. An alarm is generated when this occurs. This value is user editable.
Column 8:	"NGR Maximum Current", float; this is the value at which the system enters into an overcurrent condition. An alarm is generated when this occurs. This value is user editable.
Column 9:	"NGR Minimum Current", float; this is the value at which the system enters into an undercurrent condition. An alarm is generated when this occurs. This value is user editable.
Column 10:	"LVM Mode", Boolean (0 or 1); this value controls the operation of the line voltage monitoring subsystem. When deactivated, the line voltage monitoring subsystem will not identify the faulted phase. This value is user editable
Column 11:	"Voltage Deadband", float; this is the value of allowable voltage differential between the sensing resistor volts and NGR volts before triggering an open circuit alarm. This value is user editable.
Column 12:	"Active Sensing Mode", Boolean (0 or 1); this value controls the operation of the active open circuit detection subsystem. When deactivated, the active open circuit system will not operate. This value is user editable.
Column 13:	"Active Trigger Level", float; this is the voltage value that triggers the open circuit alarm when active sensing mode is enabled. This value is user editable.

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

3.5 Data Table "Events"

No. Columns: No. Rows: Column 1:	4 200 "Event Type", integer; this is the code used by the program to determine which screen to
Column 2: Column 3: Column 4:	"Date", string, 9 bytes; the date that the event occurred. "Time", string, 9 bytes; the time that the event occurred. "Event Acknowledge", integer; 0 – event acknowledged, 1 – event not acknowledged. Directs event display on whether to display "Event Acknowledged" tag or not.
Event Type	Event Description
74	Ground Faults Cleared - "Phase-to-ground faults no longer detected. Any undetected faults may still be on system."
75	System Charging Current - "System charging current has been calculated. View Parameters screen for calculation result."
76	Test Resistor Connected - "Test Resistor has been connected."
101	Voltage Within Limits - "Voltage across the NGR has returned to normal."
102	Current Within Limits - "Current through the NGR has returned to normal."
111	Pulse Start - "Pulsing of faulted system through NGR has started."
112	Pulse Stop - "Pulsing of faulted system through NGR has stopped."
200	Password Changed - "Password has been changed."
201	Password Disabled - "Password disabled. Protection removed from system. Unauthorized user access allowed."
202	Password Enabled - "Password enabled. Protection returned to system. Unauthorized user access not allowed."
203	Lamp Event - "Front Panel Lamps and Horn tested."
250	LVM Enabled - "Loss of Voltage Monitoring System has been Enabled."
251	LVM Disabled - "Loss of Voltage Monitoring System has been Disabled."
252	Active Sensing Enabled – "Active Sensing Resistor system has been Enabled."
253	Active Sensing Disabled – "Active Sensing Resistor system has been disabled."

3.6 Data Table "Table Counters"

No. Columns:	2
No. Rows:	1
Column 1:	"Alarm Counter", integer; this counter points to the next record to be filled in the "Alarms" table. This value is not user editable.
Column 2:	"Event Counter", integer; this counter points to the next record to be filled in the "Events" table. This value is not user editable.

3.7 Data Table "Timers"

No. Columns:	3
No. Rows:	1
Column 1:	"Ground Fault TD", integer; this is the time delay, in multiples of 10 milliseconds, before the PLC records alarms and/or events based on system conditions. This value is user editable from the "Parameters" screen.
Column 2:	"Pulse Rate", integer; this is the rate, in multiples of 10 milliseconds, that the pulse contactor cycles CLOSED and OPEN. This value is user editable from the "Parameters" screen.
Column 3:	"Alarm Resend Timer", long integer; this is the time delay, in multiples of 10 milliseconds, before alarms are resent if the VIEW ALARM button has not been pressed. This value is user editable.

3.8 Data Table "TCP-IP Init"

No. Columns:	12
No. Rows:	1
Columns 1-4:	"IP octet 1" through "IP octet 4", integers; these are the 4 octets that make up the IP address in the IP4 format. All values must be between 0 and 255. These values are user editable.
Columns 5-8:	"Subnet octet 1" through "Subnet octet 4", integers; these are the 4 octets that make up the Sub Net mask. All values must be between 0 and 255. These values are user editable.
Columns 9-12:	"Gateway octet 1" through "Gateway octet 4", integers; these are the 4 octets that make up the Gateway mask. All values must be between 0 and 255. These values are user editable.
Column 13:	"Socket Timeout", integer; this value is the time delay in seconds before closing the Ethernet port on loss of Modbus communications. This value is user editable.

3.9 Data Table "PPN Name"

No. Columns:	1
No. Rows:	1
Column 1:	"PPN Name", 20 character string containing the PulserPlus.Net [™] controller name. This value, combined with the information from table "TCP-IP Init", uniquely identifies each
	controller on the customer's Ethernet. Both items are required to access the controller via
	Ethernet NOTE IT IS HIGHLY RECOMMENDED THAT THIS VALUE NOT BE

CHANGED AS THE CONTROLLER MAY LOSE COMMUNICATIONS.

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

3.10 Data Table "RS485 Parameters"

No. Columns:	4		
No. Rows:	1		
Column 1:	"Network ID", integ must be between 6	er; this number identifies a 4 and 127 to use MODBU	a device on the RS-485 network. This value S RTU over the RS-485 network.
Column 2:	"Time Out", intege secondary controll secondary controll protocol.	r; this is the amount of tim er. This value is defaulte er, this value is only provi	te a main controller waits for answer from a ed to 100. Since the PulserPlus.Net [™] is a ded to properly initialize the MODBUS RTU
Column 3:	"Retries", integer; t	his is the number of times t alue must be between 1 a	he PulserPlus.Net [™] controller will try to send nd 10 and is defaulted to 3.
Column 4:	"Baud Rate ID", int value must be betw	eger; this value identifies the veen 1 and 10 and is defau	ne current baud rate for the RS-485 port. This ulted to 10.
	Baud Rate ID	Baud Rate	
	1	300	
	2	600	
	3	1200	
	4	2400	
	5	4800	
	6	9600	
	7	19200	
	8	38400	

3.11 Data Table "UTC Parameters"

9

10

No. Columns:	5
No. Rows:	1
Columns 1-4:	"UTC IP octet 1" through "UTC IP octet 4", integers; these are the 4 octets that make up the UTC IP address in the IP4 format. All values must be between 0 and 255. These values are user editable.
Column 5:	"UTC Socket Time-out Delay" integer; this is the value for the UTC socket to time out in seconds. This value is user editable

57600

115200

4.0 Data Table Access via Modbus

4.1 Introduction

The data tables in the controller are accessible via Modbus. This section describes the information necessary to access these data tables.

The controller's Ethernet uses a star topology. A central hub, or switch, is used to connect multiple controllers to the user's Ethernet network. The connection from the hub to each controller is limited to 100 meters. A detailed explanation of Ethernet, TCP/IP and IP addressing is beyond the scope of this document. Section 4.5 describes the requirements for using Ethernet TCP/IP with the controller in more detail.

Controller to controller communications is not implemented in the PulserPlus.Net[™].

4.2 Using Modbus to access Data Tables

The user can access the controller's data tables using Modbus. The user should not access any other items within the controller. Modifying internal controller values may cause the controller to malfunction, compromising its operation and user safety.

The controller supports RTU (binary) transmission mode over an RS-485 network and TCIP/IP protocols over an Ethernet network.

Section 4.3 gives a detailed description of the data tables.

Data tables "Alarms", "Customer Calculated Values", "Events", "Table Counters", "TCP-IP Init" and "PPN Name" should only be read from, not written to. Data tables "Customer Password", "Customer System Data" and "Timers" are both read and write compatible.

4.3 Modbus Addressing Tables

These tables are to be used when assembling the Modbus addresses for the data table variables provided in the following sections.

Coils		Modbus Command	d Number
Pointer Value	Operand Type	Read	Write
From:			
0000h	MB 0-2999	#01 Read Coils	#15 Force Coils
6000h	I (input, read only)		

Registers			Modbus Command Number		
Pointer Value	Operand type Register Size		Read	Write	
From:					
0000h	MI	16 bit	#03 Read Holding	#16 Preset Holding	
4000H	MF	32 bit	Registers	Registers	
7700h	ML	32 bit			

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

Quality System Certified to ISO 9001 Serving the Electrical Industry Since 1892 © 2015 Post Glover Resistors, Inc.

4.4 Data Table "Customer Password"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
Customer Password	Integer	MI41

4.5 Data Table "Customer System Data"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
Sensing Resistor Voltage Alarm Level – short circuit	Float	MF7
Sensing Resistor Voltage Alarm Level - normal	Float	MF4
System Rated Voltage	Float	MF10
System Rated Current	Float	MF9
NGR Maximum Voltage	Float	MF11
NGR Minimum Voltage	Float	MF12
NGR Maximum Current	Float	MF13
NGR Minimum Current	Float	MF14
LVM Mode	Boolean (0 or 1)	MB56
Sensing Resistor Voltage Deadband	Float	MF19
Active Sensing Mode	Boolean (0 or 1)	MB101
Active Trigger Level	Float	MF18

4.6 Data Table "Timers"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
Ground Fault TD	Integer	MI70
Pulse Rate	Integer	MI71
Alarm Resend Timer	Long Integer	ML0

4.7 Data Table "Customer Calculated Values"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
System Charging Current	Float	MF15

4.8 Data Table "Table Counter"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
Alarm Counter	Integer	MI12
Event Counter	Integer	MI16

4.9 Data Table "TCP-IP Init"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
IP octet 1-4	Integer	MI161, MI162, MI163, MI164
Subnet octet 1-4	Integer	MI165, MI166, MI167, MI168
Gateway octet 1-4	Integer	MI169, MI170, MI171, MI172
Scaled Ethernet TCP/IP socket time-out delay	Integer	MI173

If any of these values are updated via Modbus, the unit should be rebooted to load the values into the controller memory.

4.10 Data Table "PPN Name"

For this table, the user must download numeric values representing ASCII characters to the variables within the program. The PPN Name is limited to a length of 20 characters; each character requires 8 bits for storage. Each MI type variable consists of 16 bits, allowing the storage of 2 characters. The character string is stored in MI250 to MI 259. For each character pair, the first character is stored in the lower 8 bits and the second character is stored in the upper 8 bits. To determine the numeric codes to download to the PLC or to translate uploaded codes, follow the procedure below.

This table lists the hexadecimal codes for each ASCII character that can be used in naming the unit.

Text	Hex	Text	Hex	Text	Hex	Text	Hex
А	41	а	61	space	20	{	7B
В	42	b	62	0	30	[5B
С	43	с	63	1	31	}	7D
D	44	d	64	2	32]	5D
E	45	е	65	3	33		7C
F	46	f	66	4	34	١	5C
G	47	g	67	5	35	:	ЗA
Н	48	h	68	6	36	;	3B
I	49	i	69	7	37	"	22
J	4A	j	6A	8	38	1	27
К	4B	k	6B	9	39	<	3C
L	4C	I	6C	~	7E	,	2C
М	4D	m	6D	``	60	>	3E
Ν	4E	n	6E	!	21		2E
0	4F	0	6F	@	40	?	3F
Р	50	р	70	#	23	/	2F
Q	51	q	71	\$	24		
R	52	r	72	%	25		
S	53	S	73	^	5E		
Т	54	t	74	&	26		
U	55	u	75	*	2A		
V	56	v	76	(28		
W	57	w	77)	29		
Х	58	x	78	_	5F		
Y	59	у	79	-	2D		
Z	5A	z	7A	+	2B		
				=	3D		

1369 Cox Avenue • Erlanger, KY 41018 • USA Phone: 800-537-6144 / 859-283-0778 • Fax: 859-283-2978 www.postglover.com

Example: send "PulserPlus.Net" to controller.

MI250="Pu", MI251="Is", MI252="er", MI253="PI", MI254="us", MI255=".N" and MI256="et".

MI250 low byte is "P" and MI250 high byte is "u". From the chart above, the hex code for "P" is 50H and the hex code for "u" is 75H. Combining, the value of MI250 is 7550H. Convert this to binary. The binary for 7H is "0111" and for 5H is "0101". The binary number is "011101010101000". Converting binary to decimal, you add $2^{14}+2^{13}+2^{12}+2^{10}+2^8+2^6+2^4 = 16,384+8,192+4,096+1,024+256+64+16 = 30032$. This is the value for MI250 that would be sent to the controller.

MI251 low byte is "I" and high byte is "s". The hex value for MI251 is 736CH. The binary value is "0111001101101100" and the decimal value is 29548. This is the value for MI251 that would be sent to the controller.

MI252 low byte is "e" and high byte is "r". The hex value for MI252 is 7265H. The binary value is "0111001001100101" and the decimal value is 29285.

MI253 low byte is "P" and high byte is "I". The hex value for MI253 is 6C50H. The binary value is "0101110001010000" and the decimal value is 27728.

MI254 through MI256 would be set up in a similar manner. MI257 through MI259 would need to be sent null strings, decimal value "0", so that stray or previous characters are blanked out.

If these values are updated via Modbus, the unit should be rebooted to load the values into the controller memory.

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
PPN Name	String, 20 characters	MI250 to MI259

4.11 Data Table "Alarms"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller
Alarm Type - Display	Integer	MI50
Alarm Value - Display	Float	MF16
Date - Display	String, 9 characters	MI51-MI55
Time - Display	String, 9 characters	MI56-MI60
Alarm Acknowledge - Display	Integer	MI61

The values MI50, MF16 and MI61 are read in the same manner as in other data tables. For MI61, 0 = acknowledged, 1 = not acknowledged. Each string, MI51-MI55 and MI56-MI60, is treated in a manner similar to the "PPN Name" table. The same ASCII chart applies.

The date string is represented as mm/dd/yy plus a null (0) character. MI55 will always have a value of zero. MI51 stores the decimal equivalent of "mm", MI52 stores "/d", MI53 stores "d/" and MI54 stores "yy".

The time string is represented as hh:mm:ss plus a null (0) character. MI60 will always have a value of zero. MI56 stores the decimal equivalent of "hh", MI57 stores ":m", MI58 stores "m:" and MI59 stores "ss".

In translating the values from decimal to ASCII upon downloading, remember that the first character is stored in the lower 8 bits and the second character is stored in the upper 8 bits.

4.12 Reading Data Table "Alarms"

Similar to the "Events" data table and unlike the other data tables, the "Alarms" data table is made up of multiple rows. Each row must be read separately by the calling program. To do this, each request must force coil MB50, the "read alarm" control bit. Each request must also include MI450 (integer), the row being read. Coil MB50 must be forced for each read request. The maximum number of rows to read is the value for MI12 in the "Table Counters" data table. This request will be ignored if the user is reviewing the alarms at the controller faceplate.

The sample command sequence for reading the alarm table is as follows:

Command	Variable	Action
#03	MI12	Read number of alarms
#16	MI460	Write row number to read
#15	MB50	Force coil to change state
#03	MI50	Read Alarm Type
#03	MF16	Read Alarm Value
#03	MI51-	Read Alarm Date
	MI55	Information
#03	MI56-	Read Alarm Time
	MI60	Information
#03	MI61	Read Alarm
		Acknowledgement status

4.13 Data Table "Events"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller
Event Type - Display	Integer	MI62
Date - Display	String, 9 characters	MI51-MI55
Time - Display	String, 9 characters	MI56-MI60
Event Acknowledge - Display	Integer	MI63

The values MI62 and MI63 are read in the same manner as in other data tables. For MI63, 0 = acknowledged, 1 = not acknowledged. Each string, MI51-MI55 and MI56-MI60, is treated in a manner similar to the "PPN Name" table. The same ASCII chart applies.

The date string is represented as mm/dd/yy plus a null (0) character. MI55 will always have a value of zero. MI51 stores the decimal equivalent of "mm", MI52 stores "/d", MI53 stores "d/" and MI54 stores "yy".

The time string is represented as hh:mm:ss plus a null (0) character. MI60 will always have a value of zero. MI56 stores the decimal equivalent of "hh", MI57 stores ":m", MI58 stores "m:" and MI59 stores "ss".

In translating the values from decimal to ASCII upon downloading, remember that the first character is stored in the lower 8 bits and the second character is stored in the upper 8 bits.

4.13.1 Reading Data Table "Events"

Similar to the "Alarms" data table and unlike the other data tables, the "Events" data table is made up of multiple rows. Each row must be read separately by the calling program. To do this, each request must force coil MB51, the "read event" control bit. Each request must also include MI460 (integer), the row being read. Coil MB51 must be forced for each read request. The maximum number of rows to read is the value for MI16 in the "Table Counters" data table. This request will be ignored if the user is reviewing the events at the controller faceplate.

The sample command sequence for reading the event table is as follows:

Command	Variable	Action
#03	MI1	Read number of events
#16	MI460	Write row number to read
#15	MB51	Force coil to change state
#03	MI62	Read event type
#03	MI51-	Read event date
	MI55	information
#03	MI56-	Read event time
	MI60	information
#03	MI63	Read event
		acknowledgement status

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

4.14 Data Table "RS-485 Parameters"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable		
Network ID	Integer	MI175		
Time Out	Integer	MI176		
Retries	Integer	MI177		
Baud Rate ID	Integer	MI178		

It is recommended that the values in data table "RS485 Parameters" not be changed via Modbus.

4.15 Data Table "UTC Parameters"

The following table lists Controller Variables accessible to Modbus.

Operand Name	Data Type	Controller Variable
UTC IP Octet 1 – 4	Integer	MI316, MI362, MI363, MI364
UTC socket time out delay	Integer	MI182

5.0 Modbus Memory Map

5.1 Introduction

To facilitate communications with external monitoring and control devices, the PulserPlus.NetTM controller uses the Modbus protocol. This protocol is provided in two implementations. For RS-485 networks, the controller uses the Modbus RTU protocol. The Modbus ASCII protocol is not available. For Ethernet-based networks, the controller uses Modbus TCP/IP. A thorough discussion of these protocols is beyond the purpose of this document. Since each customer installation will be different, the customer is referred to the specific installation documents for further details.

5.2 Modbus Memory Map

In this section, the Modbus memory map is provided. This map lists the program variable, the variable type (coil or register), variable name, Modbus address, register size, read command and write command. Based upon this information, it is the customer's responsibility to properly configure the message request to the controller. All addresses are in hexadecimal (h) format.

	Variable		Modbus		
Variable	Туре	Variable Name	Address	Read	Write
MB0	Coil	voltage alarm bit	0000h	#01	NR
MB1	Coil	current alarm bit	0001h	#01	NR
MB2	Coil	phase voltage loss bit	0002h	#01	NR
MB4	Coil	voltage above maximum value	0004 _h	#01	NR
MB5	Coil	voltage below minimum value	0005h	#01	NR
MB6	Coil	current below minimum value	0006h	#01	NR
MB7	Coil	current above maximum value	0007 _h	#01	NR
MB13	Coil	phase A faulted	000Dh	#01	NR
MB14	Coil	phase B faulted	000Eh	#01	NR
MB15	Coil	phase C faulted	000F _h	#01	NR
MB21	Coil	NGR failed	0015h	#01	NR
MB50	Coil	Read Alarm Control Bit	0032 _h	NA	#15
MB51	Coil	Read Event Control Bit	0033h	NA	#15
MB56	Coil	LVM Mode	0038h	#01	#15
MB80	Coil	MODBUS Pulse Function Control Bit	0050h	#01	#15
MB87	Coil	Test Relay MODBUS Bit	0057 _h	#01	#15
MB101	Coil	Active Sensing Mode	0065h	#01	#15
10	Coil	Phase A Fault Monitor Input	6000 _h	#01	NA
11	Coil	Phase B Fault Monitor Input	6001h	#01	NA
12	Coil	Phase C Fault Monitor Input	6002h	#01	NA

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

1369 Cox Avenue • Erlanger, KY 41018 • USA Phone: 800-537-6144 / 859-283-0778 • Fax: 859-283-2978 www.postglover.com

> Quality System Certified to ISO 9001 Serving the Electrical Industry Since 1892

21

	Variable		Modbus	Register		
Variable	Туре	Variable Name	Address	Size	Read	Write
MI12	Register	Alarm Table Row Number	000Ch	16 bit	#03	NR
MI16	Register	Event Table Row Number	0010h	16 bit	#03	NR
MI23	Register	Pulse Rate	0017 _h	16 bit	#03	#16
MI24	Register	Ground Fault Time Delay	0018 _h	16 bit	#03	#16
MI25	Register	Alarm Resend Timer	0019h	16 bit	#03	#16
MI41	Register	Customer Password	0029h	16 bit	#03	#16
MI50	Register	Alarm Type	0032h	16 bit	#03	NR
MI51	Register	Date - Characters 1 & 2	0033h	16 bit	#03	NR
MI52	Register	Date - Characters 3 & 4	0034h	16 bit	#03	NR
MI53	Register	Date - Characters 5 & 6	0035 _h	16 bit	#03	NR
MI54	Register	Date - Characters 7 & 8	0036h	16 bit	#03	NR
MI55	Register	Date - Characters 9, null	0037h	16 bit	#03	NR
MI56	Register	Time - Characters 1 & 2	0038h	16 bit	#03	NR
MI57	Register	Time - Characters 3 & 4	0039h	16 bit	#03	NR
MI58	Register	Time - Characters 5 & 6	003Ah	16 bit	#03	NR
MI59	Register	Time - Characters 7 & 8	003Bh	16 bit	#03	NR
MI60	Register	Time - Characters 9, null	003Ch	16 bit	#03	NR
MI61	Register	Alarm Acknowledge	003Dh	16 bit	#03	#16
MI62	Register	Event Type	003Eh	16 bit	#03	NR
MI63	Register	Event Acknowledge	003Fh	16 bit	#03	#16
MI161	Register	IP Octet 1	00A1h	16 bit	#03	NR
MI162	Register	IP Octet 2	00A2 _h	16 bit	#03	NR
MI163	Register	IP Octet 3	00A3h	16 bit	#03	NR
MI164	Register	IP Octet 4	00A4h	16 bit	#03	NR
MI165	Register	Subnet Octet 1	00A5 _h	16 bit	#03	NR
MI166	Register	Subnet Octet 2	00A6h	16 bit	#03	NR
MI167	Register	Subnet Octet 3	00A7h	16 bit	#03	NR
MI168	Register	Subnet Octet 4	00A8 _h	16 bit	#03	NR
MI169	Register	Gateway Mask Octet 1	00A9h	16 bit	#03	NR
MI170	Register	Gateway Mask Octet 2	00AA _h	16 bit	#03	NR
MI171	Register	Gateway Mask Octet 3	00AB _h	16 bit	#03	NR
MI172	Register	Gateway Mask Octet 4	00ACh	16 bit	#03	NR
MI173	Register	Ethernet TCP/IP socket time-out delay	00AD _h	16 bit	#03	#16

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

	Variable		Modbus	Register		
Variable	Туре	Variable Name	Address	Size	Read	Write
MI175	Register	RS-485 Network ID	00AFh	16 bit	#03	NR
MI176	Register	RS-485 Time Out	00B0h	16 bit	#03	NR
MI177	Register	RS-485 Retries	00B1h	16 bit	#03	NR
MI178	Register	Baud Rate ID	00B2h	16 bit	#03	NR
MI182	Register	UTC socket time out delay	00B6h	16 bit	#03	#16
MI183	Register	Scaled UTC socket time out delay	00B7h	16 bit	#03	#16
MI361	Register	UTC IP Octet 1	0169h	16 bit	#03	#16
MI362	Register	UTC IP Octet 2	0170h	16 bit	#03	#16
MI363	Register	UTC IP Octet 3	0171 _h	16 bit	#03	#16
MI364	Register	UTC IP Octet 4	0172 _h	16 bit	#03	#16
MI450	Register	Alarm Row Being Accessed Via Modbus	01C2h	16 bit	NA	#16
MI460	Register	Event Row Being Accessed Via Modbus	01CCh	16 bit	NA	#16
MI1000	Register	MODBUS Alarm Integer	03E8h	16 bit	#03	NA
MLO	Register	Alarm resend timer	7000h	32 bit	#03	#16
MF0	Register	Scaled NGR Voltage	4000h	32 bit	#03	NR
MF1	Register	Scaled NGR Current	4002 _h	32 bit	#03	NR
MF2	Register	Scaled Test Resistor Current	4004h	32 bit	#03	NR
MF3	Register	Scaled Sensing Resistor Voltage	4006h	32 bit	#03	NR
MF4	Register	Sensing Resistor Voltage Alarm Setting – normal	4008h	32 bit	#03	#16
MF7	Register	Sensing Resistor Voltage Alarm Setting	400Eh	32 bit	#03	#16
MF9	Register	System Rated Current	4012 _h	32 bit	#03	#16
MF10	Register	System Rated Voltage	4014h	32 bit	#03	#16
MF11	Register	NGR Maximum Voltage	4016h	32 bit	#03	#16
MF12	Register	NGR Minimum Voltage	4018 _h	32 bit	#03	#16
MF13	Register	NGR Maximum Current	401Ah	32 bit	#03	#16
MF14	Register	NGR Minimum Current	401Ch	32 bit	#03	#16
MF15	Register	System Charging Current	401E _h	32 bit	#03	NR
MF16	Register	Alarm Value - Current or Voltage	4020h	32 bit	#03	NR
MF18	Register	Active Logic Trigger Level	4024h	32 bit	#03	#16
MF19	Register	Sensing Resistor Voltage Deadband	4026h	32 bit	#03	#16

Notes

NA: not applicable NR: not recommended – could cause failure of the controller or data corruption. XXXX_h: "h" subscript in addresses indicates the address is hexadecimal. Modification of variable not listed in this section could cause failure of the controller or data corruption.

To access the variables listed above, the controller responds to the following Modbus command numbers:

#01 – Read Coils
#03 – Read Holding Registers
#15 – Force Coils
#16 – Preset Holding Registers

Memory Float (MF) and long integer (ML) variables are a special case. Standard Modbus deals with 16 bit registers in transferring register data. The MF and ML variables are 32 bit double registers; the first 16-bit word is high for all 32-bit data types. For these variables, the Preset: Vector Length parameter must be doubled. For example, if it is decided to read all MF variables at one time, the Preset: Vector Length parameter should be 34. This parameter will always be an even number for MF and ML variables.9

324 Governor Road • Braeside, Victoria 3195 • AUS Phone: +61 (0)3 9587 4099 • Fax: +61 (0)3 9587 4130 www.postgloverasia.com

